Diurnal broad-front migration over the Creuse (France) in autumn 2022

Rob Lensink
Deest
The Netherlands
18 April 2023

Contents

1. Introduction 5
1.1 Background 5
1.2 Questions 6
2. Site, weather and methods 7
2.1 Site 7
2.2 Weather 8
2.3 Methods in the field 10
2.4 Time schedule of counts 11
2.5 Methods to characterize migration 12
3. Results 13
3.1 Number of species 13
3.2 Number of birds 16
3.3 Timing of migration 21
3.4 Direction of migration 24
3.5 Flying height of migrants 26
3.6 Behavioural aspects 28
4. Discussion 31
5. References 33

1 Introduction

1.1 Background

In 2006 we bought a barn in Sallandrouze, St. Maurice près Crocq, in the Creuse (23). This barn was transformed into a house. In the following years we visited the Creuse a few times a year. Especially in autumn I have looked into the air to see which species I could see migrating. I have registered a day with > 10.000 woodpigeons, >80 red kites, cormorants crossing the region at high altitude, once a Booted Eagle, large flocks of swallows. Although these were nice observations, which I enjoyed, I had no idea about the general patterns in the autumn migration in these region: species composition, numbers and timing. Furthermore, in the literature only fragmented information could be found (e.g. Chaffreix 2007, Sepol 2013, Hemmery \& Balize 2013). With this in mind, I decided to spend a an autumn in Sallandrouze to register the visible migration by daily counts. To keep the amount of work to be done limited I split this project into two parts; one year to register the short distance migration (half September - end November) and one year for the long distance migrants (end July - beginning October).

Counting visible bird migration has a long history in my home country The Netherlands. In the fourties and fifties of the previous century the Chaffinch and Starling were model species to understand the strategy of diurnal migrants along the coast of the North Sea (leading line migration) and away from the coast (inland broad-front migration). Both species are numerous migrants all over the country. Much of the research was published in Gruys-Casimir (1965). This work was the starting point of the Working group on counting visible bird migration in The Netherlands (LWVT). The main goal of this group was to quantify amount, timing and direction of migration of different species over The Netherlands in spring and autumn and regional differences on these aspects. A summary over the years 1976-1993 was published in 2003 (Lensink et al. 2003). In 1993 the working group ended his activities. In these years the digital possibilities expanded and observers of visible bird migration gathered on the digital platform trektellen.nl. Since then the number of sites and observers increased rapid. Nowadays in autumn more then 75 sites are active on a daily basis. In 2004 trektellen.nl changed into trektellen.org and became international with for instance observation sites in France.

During the years 1975-1993 counts of visible migration in The Netherlands were conducted according to a clear protocol. In this protocol counts In the early morning, starting half an hour before sunrise and lasting 10 quarters, were the basis in this project. Counts itself were done with eyes and ears, with the help of binoculars for exact counting. Furthermore observations were divided into birds passing by within a circle of 100 m around the observer and birds passing by outside this circle. After 1993 most the protocol was left behind and starting time and length of the counts were more variable and most sites skipped the use of a circle of 100 m . Besides, in the first years trektellen.nl did not facilitate such details in data sampling.

In the Netherlands I took part in daily counts in the early morning in the autumns 1981-2003 near Arnhem, with more than 100 counts between half of August and the end of November each year. With this experience in my pocket I started counts of visible bird migration at Sallandrouze in autumn 2022.

1.2 Questions

Counts of visible bird migration were done to get insight in:

- species composition
- number of birds
- direction of migration
- flying height
- behavioural aspects

In order to get a proper insight in these aspects I used the same protocol I used in The Netherlands.

In this report a brief summary is given on the aspects mentioned before. I start with a summery on site, weather, methods in the field and behind the desk.

2 Site, weather and methods

2.1 Site

The observation site is located just north of the hamlet La Sallandrouze (St. Maurice pres Crocq) (45.50.52,59 N 2.18.35,71 E). This area is part of the northern range of the Massif Central as well as the Parc Regional du Plateaux de Millevaches. In La Sallandrouze le Ruisseau de Chancet flows from east to west. Near Pontcharraud, 5 km to the west, this ruisseau comes into La Rozeille, which flows into the river Creuse 2 km south of Aubusson.

Figure 2.1 Location of the observation site Sallandrouze (yellow pin) (Google Earth).

The observation site is located on the northern slope of the Ruisseau du Chancet. To the west there is a perfect view over the valley of the Ruisseau up to 6 km away. To the south the view is at least 1500 m and to the east at least 500 m . The north the view is limited to about 100 m , due to the forest edge and the upgoing slope of the valley.

In the mountainous landscape in this part of the Creuse, the agricultural land use is grassland for beef cows interspersed by forests, wooded banks, hedges and clumps. Originally Oak Quercus robur was the dominant tree species. After WW II a part of the oaks was replaced by Norway Spruce Picea picea and Douglas Fir Pseudotsuga menziezii. Outside the forests oak is still dominant.

La Sallandrouze is 630 m above sea level. Nearby the mountains rise up to 800-900 m height. Further south at 25 km , the Plateaux du Millevaches reaches 1100 m above sea level.

2.2 Weather

Data

On site information about cloud cover, visibility, precipitation and sunshine was sampled.

Cloud cover in eighth, e.g. 0/8, 1-8, , 8/8.

Visibility, 0 = clear, 1 = light misty, no hinder, 2 = strong misty, some hinder, 3 = ground mist, 4 = light fog, hinder outside $100 \mathrm{~m}, 5$ = moderate fog, hinder outside $100 \mathrm{~m}, 6=$ heavy fog, hinder within 100 m.

Precipitation, type of rain and duration (\% of 15 minutes)
type 1 = light drizzle, paper gets wet, 2 = heavy drizzle, 3 light rain, 4 = rain, 5 = intense rain, $6=$ downpour, time to go home.

Sunshine
Visibility of the sun in \% of 15 minutes

Temperature
Noted at the beginning and end of the count; figures found on France-meteo.

Wind
Wind direction and speed (in Beaufort), found on www.buienradar.nl/europe.

Weather in autumn 2022

Since climate change became reality the year round temperature in the Creuse has increased with 1$2^{\circ} \mathrm{C}$. Summer 2022 was warmer and drier than the long term average. The warm and sunny weather continued far into autumn, with much sun and less precipitation compared to the long term average. In October the average temperature at the beginning of the day was 11,4, against 6,4 as long term average (cf. https://www.weather-atlas.com/en/france/la-creuse-climate). The average maximum at the end of the count was $19,2^{\circ} \mathrm{C}$, against $14,4^{\circ} \mathrm{C}$ as long term average. This huge difference between the long term average and the temperature in 2022 continued into the first half of November. The second half of September was relative cold compared to the monthly average ($14,7^{\circ} \mathrm{C}$ against 19,2 ${ }^{\circ} \mathrm{C}$).

On most days between $16^{\text {th }}$ September and $14^{\text {th }}$ November the weather was calm and relative warm. In the second half of this period there were many days with wind from the south; an opposite wind for birds. Tail winds were scarce in autumn 2022, but in the first half of the study period there were some days with side winds from the east. Many days started with hardly no wind. On such days after

2-3 hours wind started quit rapidly to blow. Rainy days were scarce, especially with rain for many hours. On many days there was a veiled sky, with the sun most of the time visible.

Figure 2.2 Precipitation (duration), temperature (minimum, maximum), cloud cover (average, minimum and maximum during a quarter) between 16 September and 14 November 2022.

Figure 2.3 Visibility (average of all quarters, minimum \& maximum during a quarter) and sunshine (during 30 quarters, maximum during a quarter), wind direction and wind speed (beginning and end of the count) between 16 September and 14 November 2022.

2.3 Methods in the field

Around the observation site a circle of 100 m was drawn. Outside this circle only information on species and number was sampled (and noted). Within this circle information on species, number, flight direction, flight height, flock formation, flight behaviour and type of observation was sampled
(and noted, appendix 1 for an example). For raptors and some scarce species this detailed information was also sampled for birds outside the 100 m circle. Notation per quarter.

100 m circle
In the field the circle was recognizable on landmarks like specific trees and buildings.

Species

Each passing flock was determined, based on form, speed, characteristics and call, see Gatter (1976. 2000). Mixed flocks were noted as such.

Number

Small flock were counted one by one, medium sized flocks ten by ten, large flocks hundred by hundred, very large flocks by thousands.

Direction

Flight direction was noted in 16 directions, e.g. S, SSW, SW, WSW, etc. In the field directions were recognizable on landmarks like certain trees.

Flight height

The height, above ground level, was noted in 8 classes: $1=0-2 \mathrm{~m}, 2=2-10 \mathrm{~m}, 3=10-25 \mathrm{~m}$ (into the crown of trees), $4=25-50 \mathrm{~m}$ (well above trees), $5=50-100 \mathrm{~m}, 6=100-200 \mathrm{~m}, 7=200-500 \mathrm{~m}, 8=$ $>500 \mathrm{~m}$. For class 5 and higher the noted height is an estimate, based on 40 year experience with counting visible bird migration.

Flock formation

Formations like front, elongated, ball, disk, line and V. Formations like a front or stretched can be weak or strong.

Flight behaviour

Among the small species flocks can fly in about a straight line or in one direction with small corrections on direction (like swallows do). Raptors, storks and cormorants can use flapping, gliding and soaring or combinations.

Type of observation
Three types of observation are distinguished: bird only heard (bird not found, mainly during the first 25 minutes), bird heard and seen, bird only seen.

2.4 Time schedule of a count

Counts started half an hour before sunrise exact. The moment of sunrise was found on the website of France-meteo. Most days counts lasted 30 (7,5 hours) or 32 quarters (8 hours). On most of these days migration intensity minimized 6 or 7 hours after the start. If migration intensity was still notable, the count was extended for 1 or 2 hours. Also on some days in November with nice weather reaching till far north. On such days cranes could be expected in the (late) afternoon; having started at Lac du Der in the early morning.

Counts on a day were divided into 4 parts:
quarter 01-10 early morning
quarter 11-20 late morning
quarter 21-30 early afternoon
quarter 31-40 late afternoon
quarter 01-40 whole day
These terms are also used in the results.

In total 464,5 hours have been covered by counting migration, of which 150 hours in the early morning, 146,5 in the late morning, 136,5 in the early afternoon and 31,5 hours in the late afternoon.

2.5 Methods to characterize migration

Number of birds

Data are sampled on a weekly basis. In this research I counted seven days a week, so no correction is needed to make weeks comparable. Only the first week (1 count) and the last week (3 counts) are incomplete. Data can be corrected for the counts missing. After correction weekly totals can be summed to a seasonal total. This can be done for counts of 10 q in the early morning and counts lasting a bigger (standardized part) of the day.

```
    a
EST = \sum(weekly total/ n counts a week)*7
    b
```

Whereas EST is the extrapolated seasonal total; $a=$ the first week with counts and $b=$ the last week with counts.

The number of birds of a single species one counts on a single day, or on a series of days, is an indication for the numerousness of a species on migration. At the same time it isn't fair to compare the total number of a small species with the number of a large species. Very small species are seen till about 100 m away from the observer (with the naked eye), whereas large species can be noticed at kilometers distance. Also, large flocks can be noticed at greater distance compared to small flocks or single bird flocks. To make the numbers of different species comparable, I used the proportion of birds seen in a circle of 100 m around the observer.

$$
\text { SEST }=((E S T * \% W D) / 100) * 5
$$

Whereas SEST is the standardized extrapolated seasonal total; e.g. the number of birds passing over an axis of 1 kilometer; \%WD is the proportion of birds with a direction; e.g. the proportion passing within a circle of 100 m around the observer (axis is 200 m).

Timing of migration

The timing of migration in autumn can be described by calculating the date 10, 25,50, 75 and 90% of the total has passed; expressed as D10, D25, etc. The date with the first and last observation are expressed as D0 and D100.

The length of the migration period in days can be expressed as
The full migration period (FMP) = D100-D0
The Main migration period (MMP) = D90-D10
The Top migration period (TMP) = D25-D75

Direction of migration

The direction of migration is characterized by two measures:
The average direction of migration and the rate of concentration around the average.

```
                                    1 6
                                    \sum n ni* sin ai
tan ao =
|=1
16
\sum n ni* cos ai
|=1
tan a。 = tangens of the average direction of migration
ni
sin ai = sinus of direction i
cos ai = cosinus of direction i
```



```
    \(\mathrm{I}=1 \quad \mathrm{i}=1\)
```

 \(\mathrm{I}=1 \quad \mathrm{i}=1\)
 ã $\quad=$ rate of concentration around the average direction
$\mathrm{n} \quad=$ number of birds with a direction (within 100 m of the observer).

```

\section*{Altitude of migration}

Based on the eight height classes the \(10 \%, 50 \%\) and \(90 \%\) percentiles can be calculated. For instance, if the \(50 \%\) is calculated at 4,5 , it means that the \(50 \%\) is half way in class 5 .

\section*{3 Results}

\subsection*{3.1 Number of species}

In the early morning 53 species were seen migrating between 16 September and 14 November. During the whole day the total ended up at 65 species. In the early morning 5 species were only seen once. Among those species which mainly migrate later on the day using thermals: Black Stork, Hobby, Crane; species which are real scarce like Water Pipit, Ring Ouzel, Redpoll and Cirl Bunting and species which departure sites are located at some distance like cranes. During the whole day only four species were seen once. Among them two species which mainly passes by before 15 September: Booted Eagle and Swift. The Red Footed Falcon is a migrant is really scarce in this region. The Stonechat is mainly a nocturnal migrant and is rarely noticed during the day. On 7 October a Raven was seen in a line of Red Kites migrating at great height SW.


Figure 3.1 Number of species in the early morning and during the whole day. Arrows denote the date on which 10\%, 25\%, 50\%, 75\% and 90\% species sum has passed.

In October more species were seen during a single count compared to September and November. The maximum in the early morning was 23 species on 5,10 and 29 October and for the whole day 32 species on 7 October. The maximum is relative early, and falls together with the days that the last long distance migrants pass and most of the short distance migrants have begun their autumn migration.

\subsection*{3.2 Number of birds}

In total nearly 450000 birds have been counted between 16 September and 14 November: 447534 birds exact. In the early morning the total was 237183 birds. The most numerous species was the Woodpigeon; 184337 birds in the early morning and 337183 birds during the whole day. Second best was the Chaffinch with 32399 birds in the early morning and 54218 birds during the whole day (table 3.1).


Figure 3.2 Distribution of the short distance migrants over classes of numerousness for counts in the early morning (on top, \(n=45\) ) and the whole day (below, \(n=53\) ).

Based on the EST the total number of more than \(50 \%\) of the species is passing as a migrant with less than 100 birds (figure 3.2) ; both in the early morning and during the whole day. If we correct for differences in size of species, using the proportion seen within a circle of 100 m , the largest class is 100-100 birds, with less than \(50 \%\) of the species passing with <100 birds. Note that for a whole day two species pass by with >100.000 birds over an axis of 1 km : Woodpigeon and Chaffinch (table 3.2).

Table 3.1 Number of birds seen in the early morning ( \(N\) ), the extrapolated number of birds (EST), the proportion of birds within a circle of 100 m (direction), standardized extrapolated number of birds (SEST). Species ranked on strategy ( \(a=\) long distance migrant, \(e=\) short distance migrant) and alphabet.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & strategy & N & EST em & \% with direction & SEST em \\
\hline Barn Swallow & Hirundo rustica & a & 416 & 488 & 31,8 & 776 \\
\hline Black Kite & Milvus migrans & a & 1 & 1 & 100,0 & 5 \\
\hline Hobby & Falco subbuteo & a & 1 & 1 & 100,0 & 5 \\
\hline Honny Buzzard & Pernis apivorus & a & 4 & 16 & 75,0 & 60 \\
\hline House Martin & Delchion urbica & a & 716 & 716 & 17,5 & 628 \\
\hline Marsh Harrier & Circus aeruginosus & a & 14 & 50 & 35,7 & 89 \\
\hline Sand Martin & Riparia riparia & a & 10 & 10 & 100,0 & 50 \\
\hline Tree Pipit & Anthus trivialis & a & 13 & 37 & 100,0 & 185 \\
\hline Yellow Wagtail & Motacilla cinerea & a & 11 & 17 & 100,0 & 85 \\
\hline Blackbird & Turdus merula & e & 154 & 154 & 65,8 & 506 \\
\hline Blue Tit & Parus cearulens & e & 39 & 39 & 100,0 & 193 \\
\hline Brambling & Fringilla montifringilla & e & 11622 & 11661 & 31,3 & 18276 \\
\hline Bulfinch & Pyrrhula pyrrhula & e & 4 & 4 & 100,0 & 20 \\
\hline Buzzard & Buteo buteo & e & 3 & 9 & 0,0 & - \\
\hline Chaffinch & Fringilla coelebs & e & 32399 & 32603 & 42,7 & 69620 \\
\hline Cirl Bunting & Emberiza cirlus & e & 1 & 1 & & - \\
\hline Cormorant & Phalacrocorax sinensis & e & 186 & 190 & 77,8 & 741 \\
\hline Crane & Grus grus & e & 1 & 2 & 100,0 & 12 \\
\hline Crossbill & Loxia curvirostra & e & 2 & 2 & 50,0 & 6 \\
\hline Dunnock & Prunella modularis & e & 75 & 78 & 100,0 & 390 \\
\hline Fieldfare & Turdus pilaris & e & 432 & 449 & 55,9 & 1.255 \\
\hline Goldfinch & Carduelis carduelis & e & 38 & 39 & 100,0 & 197 \\
\hline Great White Egret & Ardea alba) & e & 10 & 16 & 30,0 & 25 \\
\hline Greenfinch & Chloris chloris & e & 10 & 13 & 100,0 & 63 \\
\hline Grey Herron & Ardea cinerea & e & 6 & 6 & 30,0 & 10 \\
\hline Hawfinch & Coccothraustes coccothraustes & e & 126 & 127 & 89,8 & 570 \\
\hline Jackdaw & Corvus monedula & e & 18 & 18 & 60,0 & 54 \\
\hline Kestrel & Falco tinninculus & e & 32 & 32 & 87,9 & 139 \\
\hline Linnit & Carduelis cannabina & e & 393 & 393 & 80,7 & 1587 \\
\hline Little Egret & Egretta garzetta & e & 11 & 77 & 0,0 & - \\
\hline Meadow Pipit & Anthus pratensis & e & 248 & 249 & 99,2 & 1235 \\
\hline Merlin & Falco columbaris & e & 10 & 10 & 40,0 & 21 \\
\hline Mistle Thrush & Turdus viscivorus & e & 242 & 242 & 65,7 & 796 \\
\hline Peregrine & Falco peregrinus & e & 5 & 11 & 0,0 & - \\
\hline Red Kite & Milvus milvus & e & 192 & 192 & 36,1 & 346 \\
\hline Redpoll & Carduelis flammea & e & 1 & 1 & 100,0 & 5 \\
\hline Redwing & Turdus iliacus & e & 1922 & 2182 & 44,9 & 4899 \\
\hline Reed Bunting & Embiriza schoeniclus & e & 3 & 3 & 100,0 & 15 \\
\hline Ring Ouzel & Turdus torquatus & e & 1 & 1 & 100,0 & 5 \\
\hline Rook & Corvus frugilegus & e & 14 & 14 & 16,7 & 12 \\
\hline Siskin & Carduelis spinus & e & 884 & 891 & 57,9 & 2580 \\
\hline Skylark & Alauda arvensis & e & 392 & 392 & 41,5 & 812 \\
\hline Songthrush & Turdus philomelos & e & 1013 & 1013 & 56,4 & 2856 \\
\hline Sparrowhawk & Accipiter nisus & e & 11 & 17 & 69,2 & 59 \\
\hline Starling & Sturnus vulgaris & e & 951 & 979 & 43,1 & 2111 \\
\hline Stock Dove & Columba oenas & e & 51 & 51 & 69,4 & 177 \\
\hline Stonechat & Saxicola rubicola & e & 1 & - & 100,0 & - \\
\hline Tjiftjaf & Phylloscopus collybita & e & 3 & 3 & 100,0 & 15 \\
\hline Tree Sparrow & Passer montanus & e & 12 & 12 & 100,0 & 60 \\
\hline Water Pipit & Anthus spinoletta & e & 1 & 1 & 100,0 & 5 \\
\hline White Wagtail & Motacilla alba & e & 82 & 88 & 97,5 & 429 \\
\hline Wood Lark & Lullula arborea & e & 52 & 52 & 100,0 & 260 \\
\hline Woodpigeon & Columba palumbus & e & 184337 & 184727 & 12,1 & 111978 \\
\hline Yellowhammer & Emberiza citrinella & e & 10 & 12 & 100,0 & 58 \\
\hline All birds & & & 237183 & 238438 & 18,7 & 222871 \\
\hline
\end{tabular}

Table 3.2
Number of birds during the whole day; see for explanation table 3.1. Table on next
page.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & & strategy & N & EST day & \% with direction & SEST day \\
\hline Black Stork & Ciconia nigra & a & 15 & 15 & 60,0 & 45 \\
\hline Barn Swallow & Hirundo rustica & a & 4786 & 4942 & 28,8 & 7125 \\
\hline Black Kite & Milvus migrans & a & 2 & 2 & 100,0 & 10 \\
\hline Booted Eagle & Hieraaetus pennatus & a & 1 & 1 & 100,0 & 5 \\
\hline Hobby & Falco subbuteo & a & 8 & 14 & 75,0 & 53 \\
\hline Honny Buzzard & Pernis apivorus & a & 8 & 38 & 87,5 & 166 \\
\hline House Martin & Delchion urbica & a & 7804 & 7960 & 35,7 & 14227 \\
\hline Marsh Harrier & Circus aeruginosus & a & 34 & 94 & 40,0 & 188 \\
\hline Osprey & Pandion haliaetus & a & 3 & 15 & 100,0 & 75 \\
\hline Red-footed Falcon & Falco vespertinus & a & 1 & 1 & 100,0 & 5 \\
\hline Sand Martin & Riparia riparia & a & 370 & 370 & 75,7 & 1400 \\
\hline Swift & Apus apus & a & 1 & 1 & - & - \\
\hline Tree Pipit & Anthus trivialis & a & 28 & 76 & 100,0 & 380 \\
\hline Yellow Wagtail & Motacilla flava & a & 2 & 2 & 100,0 & 10 \\
\hline Blackbird & Turdus merula & e & 196 & 196 & 63,3 & 620 \\
\hline Black-headed Gull & Larus ridibundus & e & 9 & 9 & 100,0 & 45 \\
\hline Blue Tit & Parus cearulens & e & 59 & 59 & 100,0 & 295 \\
\hline Brambling & Fringilla montifringilla & e & 22452 & 22492 & 29,8 & 33497 \\
\hline Bullfinch & Pyrrhula pyrrhula & e & 4 & 4 & 100,0 & 20 \\
\hline Buzzard & Buteo buteo & e & 115 & 115 & 39,7 & 228 \\
\hline Chaffinch & Fringilla coelebs & e & 54218 & 54450 & 42,3 & 115252 \\
\hline Cirl Bunting & Emberiza cirlus & e & 1 & 1 & 100,0 & 5 \\
\hline Cormorant & Phalacrocorax sinensis & e & 502 & 536 & 56,6 & 1518 \\
\hline Corn Bunting & Emberiza calandra & e & 2 & 2 & 100,0 & 10 \\
\hline Crane & Grus grus & e & 3537 & 4530 & 11,9 & 2705 \\
\hline Crossbill & Loxia curvirostra & e & 10 & 10 & 90,0 & 45 \\
\hline Dunnock & Prunella modularis & e & 85 & 88 & 100,0 & 438 \\
\hline Fieldfare & Turdus pilaris & e & 642 & 669 & 54,5 & 1822 \\
\hline Goldfinch & Carduelis carduelis & e & 117 & 118 & 100,0 & 592 \\
\hline Great White Egret & Ardea alba & e & 11 & 17 & 36,4 & 31 \\
\hline Green Sandpiper & Tringa ochropus & e & 3 & 3 & 100,0 & 15 \\
\hline Greenfinch & Chloris chloris & e & 19 & 24 & 100,0 & 122 \\
\hline Grey Herron & Ardea cinerea & e & 9 & 9 & 38,5 & 17 \\
\hline Grey Wagtail & Motacilla cinerea & e & 15 & 21 & 100,0 & 105 \\
\hline Hawfinch & Coccothraustes coccothraustes & e & 202 & 203 & 93,0 & 946 \\
\hline Hen Harrier & Circus cyaneus & e & 3 & 3 & 66,7 & 10 \\
\hline Jackdaw & Corvus monedula & e & 51 & 51 & 72,5 & 185 \\
\hline Kestrel & Falco tinninculus & e & 196 & 196 & 62,4 & 612 \\
\hline Linnit & Carduelis cannabina & e & 850 & 850 & 79,3 & 3371 \\
\hline Little Egret & Egretta garzetta & e & 11 & 77 & - & - \\
\hline Meadow Pipit & Anthus pratensis & e & 601 & 602 & 98,0 & 2952 \\
\hline Merlin & Falco columbaris & e & 30 & 30 & 46,7 & 70 \\
\hline Mistle Thrush & Turdus viscivorus & e & 501 & 501 & 47,7 & 1194 \\
\hline Peregrine & Falco peregrinus & e & 7 & 13 & 9,1 & 6 \\
\hline Raven & Corvus corax & e & 1 & 1 & - & - \\
\hline Red Kite & Milvus milvus & e & 2021 & 2074 & 35,0 & 3625 \\
\hline Redpoll & Carduelis flammea & e & 2 & 2 & 100,0 & 10 \\
\hline Redwing & Turdus iliacus & e & 2504 & 2780 & 41,4 & 5750 \\
\hline Reed Bunting & Embiriza schoeniclus & e & 4 & 4 & 100,0 & 20 \\
\hline Ring Ouzel & Turdus torquatus & e & 5 & 5 & 100,0 & 25 \\
\hline Rook & Corvus frugilegus & e & 55 & 59 & 60,0 & 177 \\
\hline Siskin & Carduelis spinus & e & 1861 & 1869 & 62,5 & 5837 \\
\hline Skylark & Alauda arvensis & e & 3039 & 3062 & 47,0 & 7202 \\
\hline Songthrush & Turdus philomelos & e & 1343 & 1343 & 57,3 & 3847 \\
\hline Sparrowhawk & Accipiter nisus & e & 97 & 97 & 48,0 & 233 \\
\hline Starling & Sturnus vulgaris & e & 1369 & 1397 & 42,9 & 2998 \\
\hline Stock Dove & Columba oenas & e & 158 & 158 & 67,1 & 530 \\
\hline Stonechat & Saxicola rubicola & e & 1 & 1 & 100,0 & 5 \\
\hline Tjiftjaf & Phylloscopus collybita & e & 3 & 3 & 100,0 & 15 \\
\hline Tree Sparrow & Passer montanus & e & 12 & 12 & 100,0 & 60 \\
\hline Water Pipit & Anthus spinoletta & e & 2 & 2 & 100,0 & 10 \\
\hline White Wagtail & Motacilla alba & e & 115 & 121 & 98,2 & 594 \\
\hline Wood Lark & Lullula arborea & e & 222 & 222 & 98,2 & 1090 \\
\hline Woodpigeon & Columba palumbus & e & 337183 & 337578 & 11,0 & 184840 \\
\hline Yellowhammer & Emberiza citrinella & e & 17 & 18 & 100,0 & 92 \\
\hline All birds & & & 447534 & 450312 & 18,0 & 405281 \\
\hline
\end{tabular}

Table 3.3 Total number of birds in the early morning and during the whole day, maximum number seen on a single early morning or whole day and the maximum number relative to the total number. Scarce species omitted and species ranked on alphabeth.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & N em & max & \% N & N day & max & \% N \\
\hline Black Stork & Ciconia nigra & & 0 & & 15 & 4 & 26,7 \\
\hline Barn Swallow & Hirundo rustica & 416 & 147 & 35,3 & 4786 & 1432 & 29,9 \\
\hline Blackbird & Turdus merula & 154 & 30 & 19,5 & 196 & 31 & 15,8 \\
\hline Blue Tit & Parus cearulens & 39 & 8 & 20,7 & 59 & 13 & 22,0 \\
\hline Brambling & Fringilla montifringilla & 11622 & 1962 & 16,9 & 22452 & 3392 & 15,1 \\
\hline Buzzard & Buteo buteo & 3 & 1 & & 115 & 13 & 11,3 \\
\hline Chaffinch & Fringilla coelebs & 32399 & 3358 & 10,4 & 54218 & 5521 & 10,2 \\
\hline Cormorant & Phalacrocorax sinensis & 186 & 36 & 19,3 & 502 & 66 & 13,1 \\
\hline Crane & Grus grus & 1 & 1 & & 3537 & 1810 & 51,2 \\
\hline Dunnock & Prunella modularis & 75 & 6 & 8,0 & 85 & 7 & 8,2 \\
\hline Fieldfare & Turdus pilaris & 432 & 80 & 18,5 & 642 & 94 & 14,6 \\
\hline Goldfinch & Carduelis carduelis & 38 & 8 & 21,1 & 117 & 19 & 16,2 \\
\hline Great White Egret & Ardea alba & 10 & 3 & 30,0 & 11 & 3 & 27,3 \\
\hline Greenfinch & Chloris chloris & 10 & 4 & 40,0 & 19 & 4 & 21,1 \\
\hline Grey Herron & Ardea cinerea & 6 & 2 & 33,3 & 9 & 2 & 22,2 \\
\hline Grey Wagtail & Motacilla cinerea & 11 & 2 & 18,2 & 15 & 3 & 20,0 \\
\hline Hawfinch & Coccothraustes coccothraustes & 126 & 15 & 11,9 & 202 & 20 & 9,9 \\
\hline Hobby & Falco subbuteo & 1 & 1 & & 8 & 2 & 25,0 \\
\hline Honny Buzzard & Pernis apivorus & 4 & 2 & & 8 & 5 & 62,5 \\
\hline House Martin & Delchion urbica & 716 & 484 & 67,6 & 7804 & 2526 & 32,4 \\
\hline Jackdaw & Corvus monedula & 18 & 10 & 55,6 & 51 & 19 & 37,3 \\
\hline Kestrel & Falco tinninculus & 32 & 8 & 25,3 & 196 & 26 & 13,3 \\
\hline Linnit & Carduelis cannabina & 393 & 50 & 12,7 & 850 & 133 & 15,6 \\
\hline Marsh Harrier & Circus aeruginosus & 14 & 6 & 42,9 & 34 & 11 & 32,4 \\
\hline Meadow Pipit & Anthus pratensis & 248 & 48 & 19,4 & 601 & 82 & 13,6 \\
\hline Merlin & Falco columbaris & 10 & 1 & 10,0 & 30 & 4 & 13,3 \\
\hline Mistle Thrush & Turdus viscivorus & 242 & 51 & 21,0 & 501 & 109 & 21,8 \\
\hline Peregrine & Falco peregrinus & 5 & 2 & 40,0 & 7 & 2 & 28,6 \\
\hline Red Kite & Milvus milvus & 192 & 61 & 31,8 & 2021 & 232 & 11,5 \\
\hline Redwing & Turdus iliacus & 1922 & 229 & 11,9 & 2504 & 292 & 11,7 \\
\hline Rook & Corvus frugilegus & 14 & 9 & 64,3 & 55 & 19 & 34,5 \\
\hline Siskin & Carduelis spinus & 884 & 99 & 11,2 & 1861 & 187 & 10,0 \\
\hline Skylark & Alauda arvensis & 392 & 102 & 26,0 & 3039 & 533 & 17,5 \\
\hline Songthrush & Turdus philomelos & 1013 & 133 & 13,1 & 1343 & 295 & 22,0 \\
\hline Sparrowhawk & Accipiter nisus & 11 & 2 & 18,2 & 97 & 8 & 8,2 \\
\hline Starling & Sturnus vulgaris & 951 & 135 & 14,2 & 1369 & 171 & 12,5 \\
\hline Stock Dove & Columba oenas & 51 & 10 & 19,6 & 158 & 13 & 8,2 \\
\hline Tree Pipit & Anthus trivialis & 13 & 4 & 30,8 & 28 & 8 & 28,6 \\
\hline White Wagtail & Motacilla alba & 82 & 8 & 9,8 & 115 & 10 & 8,7 \\
\hline Wood Lark & Lullula arborea & 52 & 10 & 19,2 & 222 & 65 & 29,3 \\
\hline Woodpigeon & Columba palumbus & 184337 & 41.334 & 22,4 & 337183 & 76902 & 22,8 \\
\hline Yellowhammer & Emberiza citrinella & 10 & 2 & 20,0 & 17 & 3 & 17,6 \\
\hline All birds & & 237183 & 42.947 & 18,1 & 447534 & 81252 & 18,2 \\
\hline
\end{tabular}

The maximum number seen on a single early morning relative to the total number of birds ranged from less then \(10 \%\) for Dunnock and White Wagtail till more then \(60 \%\) for House Martin and Rook (table 3.3). The median value was 19,6\%. During the whole day less then \(10 \%\) was calculated for Hawfinch, Dunnock and White Wagtail and more than 30\% for Jackdaw, Rook, Honey Buzzard and Crane. The median value was \(16,2 \%\). For all birds together the maximum was \(18 \%\) of the total for the early morning as well as the whole day. If we compare the calculated values for the early morning and the whole day, the maximum during a whole was relative small compared to the early morning (figure 3.c).


Figure 3.3 Relation between the maximum (as a proportion of the seasonal total) in the early morning and the whole day.

\subsection*{3.3 Timing of migration}

The counts in autumn 2022 were focused on the passage of the short distance migrants. Most of these species start their migration somewhere in September and end the migration somewhere in November (table 3.4). After the start of the counts half September the end of the migration of long distance migration was registered and the first of short distance migrants. Long distance migrants start their journey somewhere in August (some in July) and have their maximum at the end of August or the beginning of September. Short distance migrants had their maximum somewhere in October. In this month also the last long distance migrants were seen. In November the numbers of most short distance migrants lowered strong, some stayed relative numerous.

The timing of migration is expressed in the dates with the percentiles for 10,50 and \(90 \%\) of the seasonal total (table 3.4). The short distance migrants reached the D10 between week 38 and 43 with the most in week 40 (1-7 Oct). Great white egret, Buzzard and Sparrowhawk were the first among all species and Fieldfare the last one. Species reached the D50 between week 39 and week 44 , with the most in week 42 (15-21 Oct). The first species to reach the D50 was Black-headed Gull and the last ones Redwing, Starling, Fieldfare, Reed Bunting and Greenfinch. The D90 was reached in week 42 till week 46 with the most in week 44 ( 29 Oct - 4 Nov). The first species to reach the D90 was Grey Wagtail and the last ones Great White egret and Greenfinch.

The length of the Full migration period ranged from less than 26 days for Rook, Ring Ouzel and Fieldfare up to more than 55 days for Great White Egret, Cormorant, Wood Pigeon, Red Kite and Chaffinch (table 3.4). The median value was located for the class 41-45 days. The Main migration period ranged from 9 days (Woodpigeon) to 45 days (Buzzard) and 58 days (Great White Egret). The median value was located in the class 21-25 days. The Top migration period had a length between 6 days (Woodlark) and more than 25 days (Greenfinch, Yellowhammer and Grey Herron). The median value was located in the class 11-15 days.


Figure 3.4 Distribution of the onset (D10), median (D50) and offset (D90) of the timing of short distance migrants over standard weeks (40 = 1-7 Oct).


Figure 3.5 Distribution of the length in days of the FMP = Full migration period, the MMP = Main migration period and the TMP Top migration period for short distance migrants.

Table 3.4 Overview of the timing of migration based on counts of the whole day. DO = first observation, \(D 10=\) date \(10 \%\) of the seasonal total has passed, etc. FMP full migration period in days, MMP = Main migration period in days, TMP Top migration period. Table on net page. \(a=\) long distance migrant, \(e=\) short distance migrant. Table on next page.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & DO & D10 & D25 & D50 & D75 & D90 & D100 & FMP & MMP & PMP \\
\hline Honny Buzzard & Pernis apivorus & a & & & & & & & 19-sep & & & \\
\hline Yellow Wagtail & Motacilla flava & a & & & & & & & 24-sep & & & \\
\hline Booted Eagle & Hieraaetus pennatus & a & & & & & & & 26-sep & & & \\
\hline Sand Martin & Riparia riparia & a & & & & & & 23-sep & 29-sep & & & \\
\hline Hobby & Falco subbuteo & a & & & & & & & 7-okt & & & \\
\hline Tree Pipit & Anthus trivialis & a & & & & & & & 9-okt & & & \\
\hline Red-footed Falcon & Falco vespertinus & a & & & & & & & 13-okt & & & \\
\hline Osprey & Pandion haliaetus & a & & & & & & & 13-okt & & & \\
\hline Black Kite & Milvus migrans & a & & & & & & & 18-okt & & & \\
\hline Black Stork & Ciconia nigra & a & & & & & & & 19-okt & & & \\
\hline Barn Swallow & Hirundo rustica & a & & & & & & 6-okt & 25-okt & & & \\
\hline Green Sandpiper & Tringa ochropus & a & 28-okt & & & 28-okt & & & 28-okt & & & \\
\hline House Martin & Delchion urbica & a & & & & & & 6-okt & 30-okt & & & \\
\hline Marsh Harrier & Circus aeruginosus & a & & & & & & 29-sep & 10-nov & & & \\
\hline Black-headed Gull & Larus ridibundus & e & 26-sep & & & 26-sep & & & 26-sep & & & \\
\hline Buzzard & Buteo buteo & e & 16-sep & 18-sep & 22-sep & 2-okt & 11-okt & 2-nov & 10-nov & 55 & 45 & 19 \\
\hline Grey Wagtail & Motacilla cinerea & e & 16-sep & 23-sep & 2-okt & 5-okt & 13-okt & 15-okt & 15-okt & 29 & 22 & 11 \\
\hline Peregrine & Falco peregrinus & e & 16-sep & & & 5-okt & & & 7-nov & 52 & & \\
\hline Sparrowhawk & Accipiter nisus & e & 16-sep & 17-sep & 25-sep & 5-okt & 16-okt & 27-okt & 10-nov & 55 & 40 & 21 \\
\hline Hen Harrier & Circus cyaneus & e & 7-okt & & & 8-okt & & & 8-okt & & & \\
\hline White Wagtail & Motacilla alba & e & 16-sep & 28-sep & 4-okt & 9-okt & 21-okt & 30-okt & 7-nov & 52 & 32 & 17 \\
\hline Meadow Pipit & Anthus pratensis & e & 23-sep & 5-okt & 8-okt & 10-okt & 17-okt & 26-okt & 13-nov & 51 & 21 & 9 \\
\hline Dunnock & Prunella modularis & e & 24-sep & 2-okt & 4-okt & 12-okt & 23-okt & 6-nov & 13-nov & 50 & 35 & 19 \\
\hline Songthrush & Turdus philomelos & e & 18-sep & 4-okt & 7-okt & 12-okt & 14-okt & 21-okt & 10-nov & 53 & 17 & 7 \\
\hline Blue Tit & Parus cearulens & e & 2-okt & 2-okt & 7-okt & 15-okt & 27-okt & 7-nov & 10-nov & 39 & 36 & 20 \\
\hline Linnit & Carduelis cannabina & e & 26-sep & 7-okt & 8-okt & 16-okt & 19-okt & 24-okt & \(9-n o v\) & 44 & 17 & 11 \\
\hline Hawfinch & C. coccothraustes & e & 23-sep & 5-okt & 9-okt & 17-okt & 23-okt & 29-okt & 13-nov & 51 & 24 & 14 \\
\hline Wood Lark & Lullula arborea & e & 30-sep & 9-okt & 13-okt & 17-okt & 19-okt & 28-okt & 11-nov & 42 & 19 & 6 \\
\hline Yellowhammer & Emberiza citrinella & e & 9-okt & 12-okt & 13-okt & 17-okt & 10-nov & 11-nov & 11-nov & 33 & 30 & 28 \\
\hline Stock Dove & Columba oenas & e & 18-sep & 3-okt & 8-okt & 17-okt & 24-okt & 27-okt & 6-nov & 49 & 24 & 16 \\
\hline Red Kite & Milvus milvus & e & 16-sep & 7-okt & 8-okt & 17-okt & 28-okt & 6-nov & 14-nov & 59 & 30 & 20 \\
\hline Chaffinch & Fringilla coelebs & e & 17-sep & 7-okt & 10-okt & 17-okt & 24-okt & 31-okt & 14-nov & 58 & 24 & 14 \\
\hline Kestrel & Falco tinninculus & e & 22-sep & 1-okt & 8-okt & 18-okt & 25-okt & 31-okt & 10-nov & 49 & 30 & 17 \\
\hline Ring Ouzel & Turdus torquatus & e & 6-okt & & & 19-okt & & & 29-okt & 23 & & \\
\hline Mistle Thrush & Turdus viscivorus & e & 22-sep & 9-okt & 13-okt & 19-okt & 20-okt & 29-okt & 11-nov & 50 & 20 & 7 \\
\hline Woodpigeon & Columba palumbus & e & 16-sep & 17-okt & 18-okt & 19-okt & 25-okt & 26-okt & 14-nov & 59 & 9 & 7 \\
\hline Jackdaw & Corvus monedula & e & 3-okt & 5-okt & 18-okt & 19-okt & 25-okt & 30-okt & 6-nov & 34 & 25 & 7 \\
\hline Merlin & Falco columbaris & e & 18-sep & 29-sep & 8-okt & 19-okt & 24-okt & 27-okt & 31-okt & 43 & 28 & 16 \\
\hline Blackbird & Turdus merula & e & 20-sep & 10-okt & 13-okt & 20-okt & 28-okt & 1-nov & 11-nov & 52 & 22 & 15 \\
\hline Siskin & Carduelis spinus & e & 3-okt & 13-okt & 16-okt & 21-okt & 27-okt & 2-nov & 14-nov & 42 & 20 & 11 \\
\hline Cormorant & Phalacrocorax sinensis & e & 16-sep & 23-sep & 7-okt & 22-okt & 29-okt & 1-nov & 13-nov & 58 & 39 & 22 \\
\hline Skylark & Alauda arvensis & e & 30-sep & 17-okt & 19-okt & 23-okt & 28-okt & 31-okt & 12-nov & 43 & 14 & 9 \\
\hline Grey Herron & Ardea cinerea & e & 25-sep & 25-sep & 5-okt & 24-okt & 1-nov & 2-nov & 4-nov & 40 & 38 & 27 \\
\hline Rook & Corvus frugilegus & e & 19-okt & 19-okt & 19-okt & 25-okt & 2-nov & 2-nov & 12-nov & 24 & 14 & 14 \\
\hline Great White Egret & Ardea alba & e & 16-sep & 17-sep & 18-sep & 26-okt & 14-nov & 14-nov & 14-nov & 59 & 58 & 57 \\
\hline Brambling & Fringilla montifringilla & e & 30-sep & 17-okt & 20-okt & 26-okt & 29-okt & 3 -nov & 14-nov & 45 & 17 & 9 \\
\hline Goldfinch & Carduelis carduelis & e & 6-okt & 10-okt & 18-okt & 27-okt & 2-nov & 8-nov & 12-nov & 37 & 29 & 15 \\
\hline Redwing & Turdus iliacus & e & 1-okt & 19-okt & 21-okt & 29-okt & 6-nov & 11-nov & & & 23 & 16 \\
\hline Starling & Sturnus vulgaris & e & 3-okt & 18-okt & 25-okt & 29-okt & 2-nov & 8-nov & 14-nov & 42 & 21 & 8 \\
\hline Fieldfare & Turdus pilaris & e & 21-okt & 22-okt & 27-okt & 30-okt & 7-nov & 11-nov & & & 20 & 11 \\
\hline Reed Bunting & Embiriza schoeniclus & e & 9-okt & & & 31-okt & & & 6-nov & & & \\
\hline Greenfinch & Chloris chloris & e & 4-okt & 6-okt & 7-okt & 2-nov & 6-nov & 12-nov & 13-nov & 40 & 37 & 30 \\
\hline Swift & Apus apus & e & & & & & & & 25-sep & & & \\
\hline Stonechat & Saxicola rubicola & e & & & & & & & 26-sep & & & \\
\hline Tjiftjaf & Phylloscopus collybita & e & & & & & & & 26-sep & & & \\
\hline Little Egret & Egretta garzetta & e & 16-sep & & & & & & 16-sep & & & \\
\hline Tree Sparrow & Passer montanus & e & 24-sep & & & & & & 2-okt & 8 & & \\
\hline Crossbill & Loxia curvirostra & e & 2-okt & & & & & & \(9-n o v\) & & & \\
\hline Raven & Corvus corax & e & 7-okt & & & & & & 7-okt & & & \\
\hline Cirl Bunting & Emberiza cirlus & e & 10-okt & & & & & & 10-okt & & & \\
\hline Crane & Grus grus & e & 12-okt & 18-okt & & & & & & & & \\
\hline Water Pipit & Anthus spinoletta & e & 13-okt & & & & & & 10-nov & & & \\
\hline Corn Bunting & Emberiza calandra & e & 20-okt & & & & & & 21-okt & & & \\
\hline Redpoll & Carduelis flammea & e & 4-nov & & & & & & 9 -nov & & & \\
\hline Bullfinch & Pyrrhula pyrrhula & e & 7-nov & & & & & & 7-nov & & & \\
\hline All birds & & & 16-sep & 13-okt & 18-okt & 19-okt & 25-okt & 28-okt & 14-nov & 59 & 15 & 7 \\
\hline
\end{tabular}

\subsection*{3.4 Direction of migration}

For the short distance migrants the average direction of migration is concentrated around SW, and for the long distance migrants around SSW (figure ). Deviations are mainly seen for short distance migrants seen in low numbers. Among the long distance migrants the main migration direction is for most species SSW and for the short distance migrants SW (table ). Both numerous swallow had a relative low proportion of all birds in the main migration direction (<50\%). Among the short distance migrants high proportions were calculated for Woodpigeon, Brambling, Goldfinch, Starling and Chaffinch; i.c. around 90\%; low figures were still above \(50 \%\).


Figure 3.6 Distribution of the average direction of migration over de standard directions for short (n \(=45)\) and long distance migrants \((n=12)\), and the distribution over classes in the rate of concentration of the average direction, proportion calculated on both groups together ( \(n\) = 57) data in table 3.x.

For most species the average direction of migration was very concentrated, with values above 0,900. Species with only one or two flocks with a direction show the highest concentration possible; 1,000. The lowest rate was calculated for the Great White Egret; 0,000. Directions do equal each other. Relative low values were seen for House Martin, Barn swallow, Songthrush and Blackbird (<0,800). The first two species may feed during migration, which might lead to migrate in different direction, where the food will bring the birds. On some days Songthrush and Blackbird are seen in all possible directions, especially during the first hours; those birds probably finish their nightly journey and seek for a good place to stay.

Table 3.5 Average direction of migration \(\left(A_{o}\right)\) and the rate of concentration around the average (ã) during the day, Main migration direction (MMD) and the proportion in that direction as well as the number of birds seen within 100 m around the observer and noted with direction (N). Long and short distance migrants separated.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & N & Ao & ã & MMD & \% \\
\hline House Martin & Delchion urbica & 2773 & 190,4 & 0,792 & ssw & 38,2 \\
\hline Barn Swallow & Hirundo rustica & 1199 & 201,3 & 0,796 & ssw & 48,4 \\
\hline Sand Martin & Riparia riparia & 280 & 201,7 & 0,986 & ssw & 97,9 \\
\hline Booted Eagle & Hieraaetus pennatus & 1 & 202,5 & 1,000 & ssw & 100,0 \\
\hline Hobby & Falco subbuteo & 6 & 206,2 & 0,989 & ssw & 83,3 \\
\hline Marsh Harrier & Circus aeruginosus & 13 & 209,5 & 0,972 & ssw & 53,8 \\
\hline Black Stork & Ciconia nigra & 9 & 209,7 & 0,917 & ssw & 44,4 \\
\hline Honny buzzard & Pernis apivorus & 7 & 212,1 & 0,981 & ssw & 57,1 \\
\hline Black Kite & Milvus migrans & 2 & 213,7 & 0,981 & ssw/sw & 50,0 \\
\hline Tree Pipit & Anthus trivialis & 11 & 221,0 & 0,989 & sw & 81,8 \\
\hline Osprey & Pandion haliaetus & 3 & 225,0 & 1,000 & sw & 100,0 \\
\hline Green Sandpiper & Tringa ochropus & 3 & 315,0 & 1,000 & nw & 100,0 \\
\hline Bullfinch & Pyrrhula pyrrhula & 8 & 67,5 & 0,383 & div & 50,0 \\
\hline Great White Egret & Ardea alba & 4 & 135,0 & 0,000 & div & 25,0 \\
\hline Black-headed Gull & Larus ridibundus & 9 & 157,5 & 1,000 & sse & 100,0 \\
\hline Crossbill & Loxia curvirostra & 8 & 160,4 & 0,790 & se & 62,5 \\
\hline Grey Herron & Ardea cinerea & 5 & 162,2 & 0,404 & div & 20,0 \\
\hline Cormorant & Phalacrocorax sinensis & 277 & 211,3 & 0,961 & sw & 50,2 \\
\hline Hawfinch & Coccothraustes coccothraustes & 184 & 211,9 & 0,865 & sw & 54,3 \\
\hline Blackbird & Turdus merula & 109 & 212,2 & 0,647 & sw & 51,4 \\
\hline Water Pipit & Anthus spinoletta & 2 & 213,8 & 0,831 & div & 50,0 \\
\hline Fieldfare & Turdus pilaris & 312 & 217,2 & 0,938 & sw & 53,2 \\
\hline Kestrel & Falco tinninculus & 122 & 217,5 & 0,968 & sw & 70,5 \\
\hline Sparrowhawk & Accipiter nisus & 46 & 217,7 & 0,967 & sw & 52,2 \\
\hline Buzzard & Buteo buteo & 42 & 218,1 & 0,969 & sw & 64,3 \\
\hline Linnit & Carduelis cannabina & 635 & 218,2 & 0,957 & sw & 61,7 \\
\hline Blue Tit & Parus cearulens & 54 & 219,3 & 0,980 & sw & 77,8 \\
\hline Merlin & Falco columbaris & 14 & 220,4 & 0,966 & sw & 71,4 \\
\hline White Wagtail & Motacilla alba & 93 & 221,0 & 0,979 & sw & 75,3 \\
\hline Grey Wagtail & Motacilla cinerea & 16 & 221,1 & 0,951 & sw & 68,8 \\
\hline Mistle Thrush & Turdus viscivorus & 215 & 221,9 & 0,868 & sw & 54,0 \\
\hline Red Kite & Milvus milvus & 702 & 222,0 & 0,979 & sw & 76,5 \\
\hline Redwing & Turdus iliacus & 794 & 222,1 & 0,954 & sw & 80,1 \\
\hline Skylark & Alauda arvensis & 1264 & 222,1 & 0,977 & sw & 87,9 \\
\hline Dunnock & Prunella modularis & 46 & 222,4 & 0,924 & sw & 76,1 \\
\hline Stock Dove & Columba oenas & 104 & 223,7 & 0,986 & sw & 80,8 \\
\hline Greenfinch & Chloris chloris & 19 & 223,8 & 0,972 & sw & 63,2 \\
\hline Goldfinch & Carduelis carduelis & 121 & 224,0 & 0,992 & sw & 93,4 \\
\hline Starling & Sturnus vulgaris & 464 & 224,0 & 0,993 & sw & 90,5 \\
\hline Chaffinch & Fringilla coelebs & 19273 & 224,2 & 0,972 & sw & 89,3 \\
\hline Ring Ouzel & Turdus torquatus & 5 & 224,2 & 0,881 & sw & 60,0 \\
\hline Brambling & Fringilla montifringilla & 5674 & 224,6 & 0,961 & sw & 92,2 \\
\hline Meadow Pipit & Anthus pratensis & 488 & 224,7 & 0,952 & sw & 82,8 \\
\hline Siskin & Carduelis spinus & 976 & 224,7 & 0,969 & sw & 84,1 \\
\hline Rook & Corvus frugilegus & 33 & 225,0 & 1,000 & sw & 100,0 \\
\hline Corn Bunting & Emberiza calandra & 2 & 225,0 & 1,000 & sw & 100,0 \\
\hline Peregrine & Falco peregrinus & 1 & 225,0 & 1,000 & sw & 100,0 \\
\hline Tjiftjaf & Phylloscopus collybita & 1 & 225,0 & 1,000 & sw & 100,0 \\
\hline Jackdaw & Corvus monedula & 35 & 225,1 & 0,905 & sw & 77,1 \\
\hline Woodpigeon & Columba palumbus & 35140 & 225,9 & 0,989 & sw & 92,3 \\
\hline Songthrush & Turdus philomelos & 693 & 226,6 & 0,596 & sw & 50,4 \\
\hline Crane & Grus grus & 418 & 228,7 & 0,989 & sw & 83,5 \\
\hline Wood Lark & Lullula arborea & 198 & 230,3 & 0,958 & sw & 78,3 \\
\hline Yellowhammer & Emberiza citrinella & 17 & 231,6 & 0,984 & sw & 70,6 \\
\hline Hen Harrier & Circus cyaneus & 2 & 236,3 & 0,981 & sw/wsw & 50,0 \\
\hline Tree Sparrow & Passer montanus & 12 & 247,5 & 1,000 & wsw & 100,0 \\
\hline Redpoll & Carduelis flammea & 1 & 270,0 & 1,000 & w & 100,0 \\
\hline All birds & & 72945 & 223,5 & 0,957 & sw & 84,4 \\
\hline
\end{tabular}

\subsection*{3.5 Flying height of migrants}

During the whole day most birds were seen migrating in height class 6 ( \(37,4 \%, 100-200 \mathrm{~m}\) ) followed by class 5 ( \(29,2 \%, 50-100 \mathrm{~m}\) ) (figure 3.7). Since the woodpigeon was by far the most numerous species, this pattern partly reflects the height distribution of this species (table 3.7). In the early morning a relative large proportion of birds was seen below 100 m height ( \(50,5 \%\) ). In the late morning the proportion below 100m height lowered till \(39,2 \%\). In the early afternoon and late afternoon these values were \(25,9 \%\) and \(18,7 \%\). At the same time the proportion in height class 7 and 8 rose from \(7,6 \%\) till \(67,5 \%\). Note that the highest proportion in class 8 ( \(>500 \mathrm{~m}\) ) was reached in the early afternoon and the highest in class 7 in the late afternoon. In the early morning the migration is dominated by passerine species whereas in the afternoon migration of passerine species is at a low level or finished. At the same time conditions for soaring birds are optimal in the afternoon. These species are numerous in the afternoon.


Figure 3.7 Height distribution of migrating birds during the whole day (left), and during the early morning (em), late morning (lm), early afternoon (ea) and late afternoon (la). The median value of the distribution is given at the bottom of the figure.

Table 3.6 The \(10 \%, 50 \%\) and \(90 \%\) percentiles of the height distribution during the whole day, and four parts of the day, as well as the migration intensity during four parts of the day in \(n / 2,5\) hours.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
whole \\
day
\end{tabular}}} & \multicolumn{2}{|c|}{morning} & \multicolumn{2}{|c|}{afternoon} \\
\hline & & & & early & late & early & late \\
\hline \multirow[t]{4}{*}{all birds} & & 10\% & 3,8 & 3,8 & 3,5 & 4,1 & 4,2 \\
\hline & & 50\% & 5,2 & 5,0 & 5,3 & 5,9 & 6,3 \\
\hline & & 90\% & 6,6 & 5,9 & 6,6 & 7,4 & 6,9 \\
\hline & & hour & & 915 & 490 & 337 & 65 \\
\hline \multirow[t]{4}{*}{Red Kite} & Milvus milvus & 10\% & 5,2 & 4,3 & 5,2 & 5,8 & 6,0 \\
\hline & & 50\% & 6,8 & 5,4 & 6,5 & 7,1 & 7,1 \\
\hline & & 90\% & 7,8 & 6,1 & 7,7 & 7,8 & 7,8 \\
\hline & & hour & & 2,9 & 10,5 & 17,8 & 2,0 \\
\hline \multirow[t]{4}{*}{Chaffinch} & Fringilla coelebs & 10\% & 3,2 & 3,3 & 3,3 & 3,0 & 3,2 \\
\hline & & 50\% & 4,2 & 4,3 & 4,1 & 3,9 & 3,9 \\
\hline & & 90\% & 4,7 & 4,7 & 4,7 & 4,5 & 4,4 \\
\hline & & hour & & 193,6 & 86,8 & 33,4 & 5,0 \\
\hline
\end{tabular}

To illustrate the shift in species composition during the day the height distribution of Red Kite and Chaffinch are given (figure 3.8, table 3.6). In the early morning migrating Red Kites were most numerous in class 6 . In the following parts of the day the most were seen in class 7 and 8 . The highest migration intensity was reached in the early afternoon (table 3.6). The Chaffinch had the highest migration intensity in the early morning. In the afternoon intensity was just a fraction of those in the early morning. At the same time, during this period of the day the flew at higher altitudes than later on the day.


Figure 3.8 Height distribution for Red Kite and Chaffinch for the early morning (em), late morning (Im), early afternoon (ea) and late afternoon (la). The median value of the distribution is given at the bottom of the figure.


Figure 3.9 Distribution of species over height classes based on the 50\% height in the early morning, late morning, early afternoon and late afternoon.

Based on the median height (table 3.7) In the early morning most species seen were flying in height class 4,5 and 6 (figure 3.9). In the next parts of the day a kind of deviation becomes visible with a group of species in classes 4 and 5 and a group of species in classes 7 and 8 . This is linked to passerine species lowering their height during the day and soaring species reaching higher altitudes later on the day.

\subsection*{3.6 Behavioural aspects}

Most species migrate in small or large flock. This flocks do have a form+ which tells something about the way a species migrate. Cormorants are most of the time seen in a line or V-formations (figure 3.10). In this formation all birds behind the first bird do save energy (Weimerskirch et al. 2001). Among smaller species lines and V-formations are lacking. Instead two major flock formations can be distinguished: a front (birds besides each other) and an elongated form (birds behind each other). Forms like a disc or a ball are in between the two major types. Barn swallows are an example of a species which mainly migrated in elongated formations whereas woodpigeons were mainly seen in frontal formations.

Raptors use three types flight behaviour: flapping, soaring and gliding, with two major combinations: flapping followed by gliding and soaring in a thermal followed by gliding to the next thermal. Here I give the example of the flight behaviour of the Red Kites during the day (figure 3.11). In the early morning a part of the birds used flapping followed by gliding. Later in the early morning birds started soaring. In the afternoon the majority was seen soaring followed by gliding. Sometimes birds make such long glides at great heights that I didn't saw them soaring in the NE, nor in the SW.

Table 3.7 Summary of the height distribution of migrants based on the median flying height (50\%) in the early morning, late morning, early afternoon and late afternoon. Species in alphabetic order.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & \multicolumn{2}{|c|}{morning} & \multicolumn{2}{|c|}{afternoon} \\
\hline & & early & late & early & late \\
\hline Barn Swallow & Hirundo rustica & 5,1 & 4,1 & 6,4 & 6,3 \\
\hline Black Stork & Ciconia nigra & & 6,9 & 6,5 & 6,6 \\
\hline Blackbird & Turdus merula & 3,8 & 3,6 & & \\
\hline Blue Tit & Parus cearulens & 3,2 & 3,2 & 3,4 & \\
\hline Brambling & Fringilla montifringilla & 4,3 & 4,2 & 4,4 & 3,5 \\
\hline Buzzard & Buteo buteo & 5,3 & 6,6 & 7,3 & 7,3 \\
\hline Chaffinch & Fringilla coelebs & 4,3 & 4,1 & 3,9 & 3,9 \\
\hline Cormorant & Phalacrocorax sinensis & 6,2 & 6,5 & 6,4 & - \\
\hline Crane & Grus grus & & & 7,1 & 7,5 \\
\hline Dunnock & Prunella modularis & 4,4 & 4,3 & 3,5 & \\
\hline Fieldfare & Turdus pilaris & 4,3 & 3,5 & 4,5 & \\
\hline Goldfinch & Carduelis carduelis & 3,7 & 3,6 & 3,3 & \\
\hline Greenfinch & Chloris chloris & 4,5 & 3,6 & & \\
\hline Grey Wagtail & Motacilla cinerea & 4,9 & 4,8 & & \\
\hline Hawfinch & Coccothraustes coccothraustes & 4,5 & 4,7 & 4,5 & 4,5 \\
\hline Hobby & Falco subbuteo & 3,5 & 5,5 & 5,5 & \\
\hline House Martin & Delchion urbica & 5,5 & 6,3 & 6,4 & 6,4 \\
\hline Jackdaw & Corvus monedula & & 5,3 & & \\
\hline Kestrel & Falco tinninculus & 4,8 & 5,4 & 5,9 & 6,7 \\
\hline Linnit & Carduelis cannabina & 3,7 & 3,5 & 3,2 & \\
\hline Marsh Harrier & Circus aeruginosus & 5,5 & 6,1 & 6,5 & \\
\hline Meadow Pipit & Anthus pratensis & 4,4 & 4,4 & 4,3 & 3,5 \\
\hline Merlin & Falco columbaris & 4,5 & 4,7 & 4,5 & \\
\hline Mistle Thrush & Turdus viscivorus & 4,3 & 4,4 & 3,6 & \\
\hline Peregrine & Falco peregrinus & & & & \\
\hline Red Kite & Milvus milvus & 5,4 & 6,5 & 7,1 & 7,1 \\
\hline Redwing & Turdus iliacus & 3,8 & 3,7 & 4,0 & 4,0 \\
\hline Rook & Corvus frugilegus & 4,6 & 6,0 & 5,5 & \\
\hline Sand Martin & Riparia riparia & & & 3,6 & \\
\hline Siskin & Carduelis spinus & 3,7 & 3,5 & 3,4 & 3,5 \\
\hline Skylark & Alauda arvensis & 4,9 & 4,9 & 4,6 & \\
\hline Songthrush & Turdus philomelos & 4,2 & 4,3 & 3,9 & \\
\hline Sparrowhawk & Accipiter nisus & 5,1 & 5,8 & 6,4 & 6,5 \\
\hline Starling & Sturnus vulgaris & 3,4 & 4,2 & & \\
\hline Stock Dove & Columba oenas & 4,7 & 5,4 & 5,5 & 4,5 \\
\hline Tjiftjaf & Phylloscopus collybita & & & & \\
\hline Tree Pipit & Anthus trivialis & 4,8 & 4,0 & 3,5 & \\
\hline White Wagtail & Motacilla alba & 4,4 & 3,8 & & \\
\hline Wood Lark & Lullula arborea & 4,5 & 4,5 & 4,3 & \\
\hline Woodpigeon & Columba palumbus & 5,4 & 5,6 & 5,4 & 5,0 \\
\hline Yellowhammer & Emberiza citrinella & 4,2 & 3,8 & & \\
\hline All birds & & 5,0 & 5,3 & 5,9 & 6,3 \\
\hline
\end{tabular}


Figure 3.10 Flock formations for three species as a proportion of the total number of birds; Cormorant \(n=419\), Barn Swallow \(n=2759\), Woodpigeon \(n=48043\).


Figure 3.11 Flight behaviour of migrating Red Kites during the early morning ( \(n=168\) ), late morning ( \(n=611\) ), early afternoon \((n=1050)\) and late afternoon \((n=105) . v=\) flapping, \(-=\) gliding \(o=\) soaring .

\section*{4 Discussion}

\section*{Methods}

The method I used has been proved to be useful. The main points are a circle of 100 m around the observer to limit the amount of work to be done and to maintain accuracy in data sampling. Within the circle one can be more precise in estimating number, direction, height and other aspects.

At greater distance it was difficult to distinguish between brambling and chaffinch. Flocks of bramblings seems to be more dynamic. After discussion with other observers, I think I overestimated the number of Bramblings. Therefore the number of Chaffinches might have been higher and the calculated median date 1 or 2 days later.

\section*{Number of birds}

Since I started counting on the \(16^{\text {th }}\) of September most of the long distance migrants already have passed. Therefore the number seen of these species in the last days of September, is no more of a glimpse of the real number. To sort that out is for another year. To see the start of the short distance migrants this data was just early enough. The last count was done at 14th November. In the days before intensity had lowered day after day indicating migration had come to an end. For some species later in November some small waves of migrants could be expected. So, the number seen is a minimum but for most species it would not have been really changed if I would counted till the end of November.

\section*{Timing of migration}

For the short distance migrants the seasonal pattern was characterized by the 10\%, 25\%, 50\%, 75\% and \(90 \%\) percentiles. These figures are valid for autumn 2022. Since the timing can change from year to year with at least a few days. The calculated dates are an indication for a more general picture.

The last count was done at 14th November. For species like Redwing, Fieldfare and Crane more birds could be expected in the second half of November. For such species the calculated length of the Total migration period and most likely the Main migration period are a minimum.

\section*{Direction of migration}

Migration over the Creuse was concentrated around SW with for short distance species and SSW for long distance migrants. This suggests that the short distance migrants passing the Creuse mainly use the westside of the Pyrenees to enter the Iberian Peninsula. Long distance migrants, moving for Africa were more heading towards Gibraltar, and most probably will cross the Pyrenees in the middle.

\section*{Altitude of migration}

In the field an estimate was done on the flying height of passing migrants. In the lower air layers, e.g. till 50 m the can be done quite accurate. Surrounding trees, with a known height, can be of help in estimating the height. At higher altitudes references are lacking and It will be the experience of the observer that makes the picture. With more observers present it might help to discuss the estimate and to correct each other if necessary. I did not had any co-observers. Non the less, the general patterns shown will be close to reality.

Species like finches are small. With the naked eye they are visible at a distance of 100/200 m in the horizontal way and 50/100 m in the vertical way. Radar studies have shown that small birds can
migrate up to 1.000 m height during the daylight period, especially with tail winds. With opposite winds birds migrate mainly in the lower air layers; and most of the migrants can be seen by observers on the ground (Buurma et al. 1986). In autumn 2022 there was a long period with opposite winds. So in autumn 2022 a substantial part of the total migration was seen.

\section*{Conclusion}

Counting visible bird migration is a fascinating sport and can help to understand the strategy of species to overcome the distance between breeding and wintering area vice versa.

\section*{5 References}

Buurma L.S., R. Lensink \& L.G. Linnartz, 1986. Altitude of diurnal broad front migration over Twente; a comparison of radar and visual observations in October 1984. Limosa 59:169-182. (in Dutch with English summary)

Chaffraix M. 2007. La migration des oiseaux à Saint-Gervais-d'Auvergne (Puy-de-Dôme) de 1990 à 2006. Le Grand-Duc 71 : 15-23

Gatter W. 1976b. Feldkenzeichen ziehender Passerines. Vogelwelt 97: 201-217.
Gruys-Casimir E.M. 1965. The influence of environmental factors on the autumn migration of Starling Sturnus vulgaris L. and Chaffinch Fringilla coelebs L.. Arch. Neerl. Zool. 16: 165-279.

Hemery D. \& C. Blaize 2013. Migration postnuptiale des oiseaux au col de Prat de Bouc, Cantal : synthèse des années 2009, 2010 et 2012. Le Grand-Duc 81 : 71-82

Jaffré M, G. Beaugrand, É. Goberville, F. Jiguet, N. Kjellén, G. Troost, P.J. Dubois, A. Leprêtre, C. Luczak 2013. Long-Term Phenological Shifts in Raptor Migration and Climate. PLoS ONE 8(11): e79112. doi:10.1371/journal.pone. 0079112

Lensink R., H. van Gasteren, F. Hustings, L. Linnartz., F. Vogelzang, C. Witkamp, L.S. Buurma \& G. van Duin (eds.) 2002. Lwvt/Sovon. Bird migration over The Netherlands, 1976-1993. Schuyt \& Co., Haarlem (in Dutch with English summary).

Sepol 2013. Atlas des oiseaux du Limousin. Quelles evolution en 25 ans ? Biotope, Méze.
Weimerskirch H., J. Martin, Y. Clerquin, P. Alexandre \& S. Jiraskova 2001. Energy saving in flight formation pelicans flying in a ' \(V\) ' can glide for extended periods using the other birds' air streams. Nature 413: 697-698.
```

